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GENERATION OF GATE SHIP SPEED DATA BY VARIATIONAL TECHNIQUE 1 

Center for Experiment Design and Data Analysis, 
Environmental Data Service, NOAA, Washington, D.C. 

ABSTRACT. During GATE [GARP Atlantic Tropical Experiment (GATE); 
Global Atmospheric Research Program (GARP)], June to September 
1974, ship velocities were required to process and correct sur
face and upper air wind velocities acquired by the research 
ships. In a ship maneuver, unfortunately, only ship-heading 
data were reliable and continuously available. The sensors meas
uring speed relative to water functioned erratically throughout 
the experiment. A technique to generate reasonable speeds dur
ing the maneuver was developed. The generated speeds are con
sistent with ship positions, times, and velocities of the begin
ning and end of the maneuver together with the heading data. The 
speeds are obtained by requiring that the sum of squares of the 
changes in speeds be a minimum. Finding the minimum is brought 
about by using the method of the discrete calculus of varia
tions. This method is sketched, and a simple case is worked out 
as an illustration. The general method is then applied to a ser
ies of test cases. Finally, modifications of the technique need
ed to handle inconsistent real data are stated. 

I. INTRODUCTION 

During GATE conducted from June to Septem
b.er 1974, ship velocities were required to 
process and correct surface and upper air 
wind velocities acquired by the research 
ships. The primary source of ship-velocity 
information was derived from navigation ra
dar fixes on a radar marker buoy anchored at 
each ship's station. Range and bearing from 
the ship to the buoy were obtained roughly 
every 15 min. This information then \Vas 
used to calculate the ship's velocity for 
period~ when the ship was steaming at con
stant velocity or drifting. These data, how
ever, were too coarse to resolve ship veloc
ities when the ship was maneuvering (i.e., 
the ship was accelerating or decelerating, 
and ship speeds exceeded 1 kt). 

developed to generate reasonable speeds dur
ing a maneuver. These speeds are consistent 
not only with the known headings but also 
with the known ship positions, times, and 
velocities of the beginning and end of the 
maneuver. The explanation and illustration 
of this technique is the subject of this 
memorandum. 

Ship speeds and directions of motion were 
required to obtain ship velocities in a man
euver. As a first approximation to the di
rection of motion, the ship heading was 
used. Headings from strip charts were sam
pled at 10-s intervals during maneuvers. 
Ship speeds relative to water were measured 
on each ship, but the speed sensors perform
ed erratically throughout the experiment. A 
technique was needed and subsequently was 

1GARP Atlantic Tropical Experiment (GATE); 
Global Atmospheric Research Program (GARP) 
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I!. A REASONABLE CRITERION 

We assumed that the set of N+l unknown 
speeds Vo, V1, V2, ... , VN is compatible with 

the set of known headings So, 61, 62, ... , eN 

in the 
the known 
known end 

and 

sense that 
beginning 
position. 

N-1 

the ship should start at 
position and stop at the 

This means that 

l: vn sin(8n)lltn 
n=O 

X ( 1) 

y (2) 

where X and Y are the east-to-west and 
north-to-south distance intervals from the 
beginning to the end location and fitn is the 



time interval between heading readings. This 
condition by itself does not determine a 
unique path. Some additional restriction(s) 
must be placed on the set of speeds. 

The first restriction was that the initial 
unknown speed equal the known speed VO at 
the maneuver beginning (Vo = VO) and the 
same hold for the last unknown speed; 
VN = VN, the known speed at the maneuver 

end. The second restriction chosen was to 
minimize the sum of squares of speed chang
es, that is, 

~-![ vn+I - vn ]2 
~... minimum. 
n=O M n 

(3) 

This is physically plausible since ship 
speeds usually do not change too rapidly 
from one heading reading to the next. The 
time intervals, ~t , in the denominator n 
function correctly as weights. Suppose one 
time interval, ~tk, is much smaller than the 

others. Then Vk+l - Vk ~ 0 is necessary to 

keep the sum in eq (3) small. This implies 
that, for readings taken very close together 
in time, nearly identical speeds would be 
obtained, which makes sense. Finally, as 
will be shown in the next topic, the mini
mizing procedure is related to the curvature 
of the speed profile as a function of time. 
This curvature or smoothness is the quantity 
of interest in hand-smoothing analysis. 

I'll. MINIMIZING THE SUM 

The formal name for the technique used to 
m1n1m1ze the sum in eq (3) is the discrete 
calculus of variations, often used by Sasaki 
(1970). A very clear description of the 
technique is given by Feynman et a!. (1966). 
It will be sketched here since the discrete 
version of the technique is not too famil
iar. 

The way to obtain a practical algOrithm 
for minimizing the sum in eq (3) is first to 
assume that the correct set of speeds V1, 
Vz, •. • , VN-l which minimizes the sum is 

known. Then choosing any other set of speeds 
such as vl + ovl and v2 + ov2 will increase 
the sum no matter what OVI, ov2, ... , OVN-l 

are. (Note that OV = OV N = 0 since the ini
tial and final speeds are fixed.) This means 
that 

N-l[(V I E n+ 
n=O 

+ ov 1) - cv + ov JJ2 n+ n n 

6t 

~-I[_v'£n+'-'1'-·--_v.!.'.n]2 ~ o 
n=O M 

2 

--------~---- ·------· 

for any choice of OV J OV 
1

. In the spe-n n+ 
cific problem at hand, all time intervals 
were equal to fit = 10 s. This eventually 
simplifies the mathematics but does not 
change the idea behind the minimization al
gorithm. Squaring the terms in the left
hand sum and performing the subtraction 
gives 

~-I [vn+I - vn](ov - ov l 
n=O fit2 n+ 1 n 

+ .!. ~-! [oVn+I - 6Vn]2 ~ o. 
2 n=O M 

Since the quantities (OVn+l - 8Vn) 2 are 

always : 0, they will be ignored in attempt
ing to satisfy the inequality. (This leads 
to the same answer as a more rigorous analy
sis.) When the remaining sum is expanded 
and similar terms are collected, the final 
inequality that must be satisfied for any 
set of OV 1 s is n 

- ~-! [-V'-"n:o_+ ~~--2-CV n:__+__:V n~-:-".1] oV > 0. 
n=l M' n -

(4) 

If the OV 's were completely free choices, n 
the only way to guarantee that the inequal
ity always will hold is to set each term in 
brackets in eq (4) equal to zero. The set 
of OV 's is not completely arbitrary since n 
eq (I) and (2) still must be satisfied. To 
take these into account, we use the method 
of Lagrangian multipliers. Instead of mini
mizing eq (3), we minimize the sum 

~-! [Vn+l - Vn]
2 

+ A (~-! V sin(8n)llt - X)\ 
n=D fit x n=O n ') 

+A (~-IV cos(8 )M-Y) 
y n=O n n 

where A and A are the Lagrangian multipli-x y 
ers. The minimizing algorithm now takes the 
form 

vn+l - 2 vn + vn-l 

M' 

The Lagrangian multipliers are determined by 
requ1r1ng that the solution to eq (5) also 
satisfies the distance conditions,eq (1) and 
(2) . 

The quantity on the left of eq (5) is a 
discrete analog to d2V/dt 2 • The second der
ivative, in turn, is proportional to the 



curVature or smoothness of the curve. Con
sider how a hand analysis of the missing 
speeds problem would proceed. A chain of N 
vectors would be drawn from the beginning to 
the end position of the maneuver. The nth 
vector would have the direction 8 and 

n 
length S b.t where S is the estimated speed. n n 
Upon inspection, the estimated lengths would 
be adjusted until, eventually, the change in 
adjacent lengths (speeds) would be smooth 
rather than abrupt. Thus the minimization 
procedure, as embodied in eq (5), provides 
one way of automating the hand analysis. 

IV. EXAMPLE OF METHOD 

To illustrate the methods of the differ
ence calculus and the role of Lagrangian 
multipliers, consider the simple case in 
which all headings are due north. For this 
case, cos(8 ) = 1 and sin(8 ) = 0 so that eq n n 
(5) reduces to 

V - 2V + V l = A M 3
• 

n+l n n- y 

Working by analogy with differential equa
tions, we need to find a function with its 
second difference being a constant. The func
tion, which can be verified by substitution, 
is 

vn = a + bn + 

The two constants a,b 
boundary conditions Vo 

(A M 3/2)n2
• 

y 
are determined by 
= VO and VN = VN. 

ing these conditions gives 

the 
Us-

V = VO + n(VN- VO)/N- (A ~t 3/2)n(N-n). n y 

The first part of the solution gives a lin
early interpolated speed profile, which will 
still remain in a more general solution. 

The second, parabolic part of the solution 
contains the still undetermined Lagrangian 
multiplier. Now, it is determined by the 
distance condition 

N-1 
l: VnM - Y. 
n=O 

To clarify matters even more, let VN=VO and 
make the approximation that, for large N, 

N-1 
l: n(N-n)+N 3 /6. 
n=O 

Then using the distance condition and set
ting T = Nb.t, the total maneuver time, the 
result is 

Vn = VO- 6(n/N)*[l-(n/N)]*(VO- Y/T). (6) 

This solution is ·physically reasonable. 
The quantity 6(n/N) * [1-(n/N)] is a parabola 
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in n, having a maximum of 1.5 at n=N/2 and 
going to 0 at n=O and n=N. If (VO - Y/T) >0, 
then Vn is less than VO during the maneuver. 

In this case, VO*T > Y; and there must be an 
overall deceleration, or the ship would 
overshoot the known distance Y. In the op
posite case where VO*T < Y, an overall ac
celeration is needed and is provided by the 
solution. The Lagrangian multiplier is pro
portional to the difference between the 
known travel distance and the distance the 
ship would cover traveling at an "average" 
speed. 

V. GENERAL CASE 

For the general two-dimensional case, eq 
(5) must be solved. It can be solved by us
ing a method of the difference calculus an
alogous to the variation of parameters meth
od in the differential calculus. It can be 
solved more simply by treating it as a re
cursion relation. This method is shown in 
appendix I. Whichever approach is used, the 
result is 

where 

and 

v n [VO + n(VN - VO)/N] 

+A ~t 3 [S(n) - nS(N)/N] 
X 

+A ~t 3 [C(n) - nC(N)/N] 
y 

n 
S(n) - l: (n - k) sin(Sk) 

k=l 

n 
C(n) - l: (n - k) cos(Sk). 

k=l 

(7) 

This solution also must satisfy the distance 
conditions of eq (1) and (2). Substituting 
eq (7) in these results in two linear equa
tions in the two unknown parameters A and 

X 

Ay. The parameters are obtained by solving 

the pair of linear simultaneous equations. 
To check the algorithm, we used a series 

of test cases of increasing complexity. For 
the test cases, sets of known headings and 
speeds were chosen. The distances X and Y 
were calculated by substituting the known 
headings and speeds into eq (1) and (2). Us
ing X and Y, the known initial and final 
speeds VO and VN, the known headings, and 
known b.t, from eq (7) we computed the speed 
profiles generated by the minimization algo
rithm. These were compared with the origi
nal chosen speeds. 

In the first test, we used a set of con
stant input speeds, VO = v1 = ... , VN and 

different sets of headings. For these cases, 
the generated speeds also should equal the 
same constant since this will make the sum 
in eq (3) equal to zero, an absolute mini-
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Table I.--Comparison of speeds generated by 
the minimization algorithm with test 
speeds for a roughly 

Heading 
(deg.*) 

60.00 
63.00 
65.73 
68.43 
70.99 
73.62 
76.34 
79.01 
81.98 
84.84 
87.76 
90.49 
93.14 
95.96 
98.50 

101.41 
104.00 
106.83 
109.50 
112.00 
114.59 

*Degree 

Test speed 
(m/s) 

1.00 
1.50 
2.00 
2.70 
3.50 
4.20 
5.00 
5.50 
6.00 
6.80 
7.20 
7.50 
7. 70 
7.80 
7.50 
7.00 
6.50 
5.50 
4.50 
2.50 
1. 00 

6 

5 

~ s 4 

0 
w 
w 
0. 
(/) 

3 

2 

semicircular maneuver 

Generated speed 
(m/s) 

1.00 
1.50 
2.09 
2.75 
3.44 
4.16 
4.87 
5.55 
6.18 
6. 74 
7.19 
7.51 
7.68 
7.68 
7.48 
7.07 
6.41 
5.50 
4,30 
2.81 
1. 00 

STOP 

-120 
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Figure 1.--Path of a trial ship-maneuver 
that was used to check the method. The 
arrows indicate the direction of travel. 
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Figure 2.--Plot of the ship's speed as it travels the path shown in 
figure 1. Triangles denote actual speed data; squares indicate 
speeds generated by the variational technique. 

4 



mum. These cases actually arc a verifica
tion that the algebraic steps in the algo
rithm have been handled correctly. All the 
generated speeds were constant for these 
cases. In the second test, we used a rough
ly semicircular path with varying speeds. 
The results are shown in table 1; they are 
encouraging. In the third test, we used the 
maneuver shoWn in figure 1. The results are 
plotted in figure 2; and, once again, the 
agreement is good. 

VI. MODIFICATIONS 

The results of the test cases showed the 
feasability of the method. It then was tried 
on the actual GATE data, and these trials 
showed that two modifications were neces
sary. The first, oddly enough, occurred in 
the case in which the maneuver was almost a 
constant one. In this case, the general two
dimensional solution [eq (7)] was sensitive 
to measurement errors in the path distances 
X and Y. This was corrected easily by stip
ulating that, if the total sum of the abso
lute values of heading changes was ~3°, the 
maneuver then would be treated as a true 
constant heading case. 

The second modification was necessitated 
by the fact that ship-heading data are not 
always representative of the actual ship
motion directions. This is due to such ef
fects as ocean currents and side slipping by 
the ship. In those instances when the ship 
headings are not accurate enough to bring 
the ship to the end point of the maneuver, 

the following procedure is used. The compu
ter program rotates each of the headings by 
a constant angle until a reasonable path is 
reached. The criterion for reasonableness 
is, once again, the minimization of the sum 
of squares, eq (3). The program tries a set 
of different rotation angles and calculates 
eq (3) for each angle (each different path). 
It settles on the path for which the minimum 
is an absolute minimum. 

These modifications were needed for only a 
small minority of the maneuvers that were 
evaluated. If the headings are reasonably 
consistent with the beginning and end posi
tions, the minimization method does give a 
reasonable set of speeds. 
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APPENDIX I 

Equation (5) is a recursion relation ih which Vn+l is given in terms of V , V 1, and the n n-
known heading en. The initial speed is known, Vo ='vo. If V1 were known, V2 could be ob-

tained from V1 and VO. Then, V3 could be obtained, for example, from V2 and V1. Unfortun
ately, V1 is not given. A second boundary condition is available, namely VN = VN. VN can 

be obtained in terms of V1 , VO, and the set of known headings. Setting VN equal to VN, we 

then obtain V1 in terms of known quantities. The recursion relation now generates the rest 
of the speeds. Using eq (5), we obtain the following set of equations: 

Vz zv,- VO + Axfit 3 sin(61) + Ayfit 3cos(e,), 

VO + 2(V1 - VO) +A fit 3sin(61) +A fit 3cos(6,), 
X y 

V3 VO + 3(V1 - VO)+ A fit 3 [Zsin(61) + sin(6z)] +A fit 3 [2cos(6,) + cos(6z)], 
X y 

VN VO + N(V, - VO) +A fit 3 [(N-l)sin(6 1) + (N-2)sin(6z) + 
X 

+A fit 3 [(N-l)cos(6,) + (N-2)cos(6z) + 
y 

Using the definitions of S(n) and C(n) results in 

V1 = VO + (VN - VO)/N - A fit 3S(N)/N - A fit 3C(N)/N. 
X y 

... , sin(eN-l)] 

... , cos(eN-l)]. 

Substituting V1 into the recursion relation eq (5) gives the solution shown in eq (7). 
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